2,807 research outputs found

    Quantum dynamics in high codimension tilings: from quasiperiodicity to disorder

    Full text link
    We analyze the spreading of wavepackets in two-dimensional quasiperiodic and random tilings as a function of their codimension, i.e. of their topological complexity. In the quasiperiodic case, we show that the diffusion exponent that characterizes the propagation decreases when the codimension increases and goes to 1/2 in the high codimension limit. By constrast, the exponent for the random tilings is independent of their codimension and also equals 1/2. This shows that, in high codimension, the quasiperiodicity is irrelevant and that the topological disorder leads in every case, to a diffusive regime, at least in the time scale investigated here.Comment: 4 pages, 5 EPS figure

    Analytical probabilistic approach to the ground state of lattice quantum systems: exact results in terms of a cumulant expansion

    Full text link
    We present a large deviation analysis of a recently proposed probabilistic approach to the study of the ground-state properties of lattice quantum systems. The ground-state energy, as well as the correlation functions in the ground state, are exactly determined as a series expansion in the cumulants of the multiplicities of the potential and hopping energies assumed by the system during its long-time evolution. Once these cumulants are known, even at a finite order, our approach provides the ground state analytically as a function of the Hamiltonian parameters. A scenario of possible applications of this analyticity property is discussed.Comment: 26 pages, 5 figure

    Semi-autonomous competency assessment of powered mobility device users

    Full text link
    This paper describes a stand-alone sensor package and algorithms for aiding the assessment by an occupational therapist whether a person has the capacity to safely and effectively operate a powered mobility device such as a walking aid or a wheelchair. The sensor package employed consists of a laser range finder, an RGB camera and an inertial measurement unit that can be attached to any mobility device with minimal modifications. Algorithms for capturing the data received by the sensor package and for generating the map of the environment as well as the trajectory of the mobility device have been developed. Such information presents occupational therapists with the capability to provide a quantitative assessment of whether patients are ready to be safely deployed with mobile aids for their daily activities. Preliminary evaluation of the sensor package and associated algorithms based on experiments, conducted at the premises of the Prince of Wales Hospital in Sydney, are presented. © 2011 IEEE

    Rigidity percolation on aperiodic lattices

    Full text link
    We studied the rigidity percolation (RP) model for aperiodic (quasi-crystal) lattices. The RP thresholds (for bond dilution) were obtained for several aperiodic lattices via computer simulation using the "pebble game" algorithm. It was found that the (two rhombi) Penrose lattice is always floppy in view of the RP model. The same was found for the Ammann's octagonal tiling and the Socolar's dodecagonal tiling. In order to impose the percolation transition we used so c. "ferro" modification of these aperiodic tilings. We studied as well the "pinwheel" tiling which has "infinitely-fold" orientational symmetry. The obtained estimates for the modified Penrose, Ammann and Socolar lattices are respectively: pcP=0.836±0.002p_{cP} =0.836\pm 0.002, pcA=0.769±0.002p_{cA} = 0.769\pm0.002, pcS=0.938±0.001p_{cS} = 0.938\pm0.001. The bond RP threshold of the pinwheel tiling was estimated to pc=0.69±0.01p_c = 0.69\pm0.01. It was found that these results are very close to the Maxwell (the mean-field like) approximation for them.Comment: 9 LaTeX pages, 3 PostScript figures included via epsf.st

    What is a crystal?

    Get PDF
    Almost 25 years have passed since Shechtman discovered quasicrystals, and 15 years since the Commission on Aperiodic Crystals of the International Union of Crystallography put forth a provisional definition of the term crystal to mean ``any solid having an essentially discrete diffraction diagram.'' Have we learned enough about crystallinity in the last 25 years, or do we need more time to explore additional physical systems? There is much confusion and contradiction in the literature in using the term crystal. Are we ready now to propose a permanent definition for crystal to be used by all? I argue that time has come to put a sense of order in all the confusion.Comment: Submitted to Zeitschrift fuer Kristallographi

    Desiccation Responses and Survival of \u3ci\u3eSinorhizobium meliloti\u3c/i\u3e USDA 1021 in Relation to Growth Phase, Temperature, Chloride and Sulfate Availability

    Get PDF
    Aims: To identify physical and physiological conditions that affect the survival of Sinorhizobium meliloti USDA 1021 during desiccation. Methods and Results: An assay was developed to study desiccation response of S. meliloti USDA 1021 over a range of environmental conditions. We determined the survival during desiccation in relation to (i) matrices and media, (ii) growth phase, (iii) temperature, and (iv) chloride and sulfate availability. Conclusions: This study indicates that survival of S. meliloti USDA 1021 during desiccation is enhanced: (i) when cells were dried in the stationary phase, (ii) with increasing drying temperature at an optimum of 37°C, and (iii) during an increase of chloride and sulfate, but not sodium or potassium availability. In addition, we resolved that the best matrix to test survival was nitrocellulose filters. Significance and Impact of the Study: The identification of physical and physiological factors that determine the survival during desiccation of S. meliloti USDA 1021 may aid in (i) the strategic development of improved seed inocula, (ii) the isolation, and (iii) the development of rhizobial strains with improved ability to survive desiccation. Furthermore, this work may provide insights into the survival of rhizobia under drought conditions. © 2006 The Society for Applied Microbiology

    On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms

    Full text link
    Uniquely closable skeletons of lambda terms are Motzkin-trees that predetermine the unique closed lambda term that can be obtained by labeling their leaves with de Bruijn indices. Likewise, uniquely typable skeletons of closed lambda terms predetermine the unique simply-typed lambda term that can be obtained by labeling their leaves with de Bruijn indices. We derive, through a sequence of logic program transformations, efficient code for their combinatorial generation and study their statistical properties. As a result, we obtain context-free grammars describing closable and uniquely closable skeletons of lambda terms, opening the door for their in-depth study with tools from analytic combinatorics. Our empirical study of the more difficult case of (uniquely) typable terms reveals some interesting open problems about their density and asymptotic behavior. As a connection between the two classes of terms, we also show that uniquely typable closed lambda term skeletons of size 3n+13n+1 are in a bijection with binary trees of size nn.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854
    • …
    corecore